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Winter 2018 January 12, 2018

Problem Set 1

Here we are – the frst problem set of the quarter! This problem set is designed to give you practice
writing proofs on a variety of diferent topics. We hope that this problem set gives you a sense of
what proof-based mathematics is like and helps solidify your understanding of set theory.

Before you start this problem set, please do the following:

• Sign up for Piazza so that you have an easy way to ask us questions.

• Review the office hours timetable to fnd good times to drop on by to ask questions.

• Review Handout #07, “Set Theory Defnitions,, for a refresher on key terms, defnitions,
and theorems about set theory that might come up in this problem set.

• Review Handout #08, “Guide to Proofs,, which has advice about how to write and struc-
ture your proofs.

• Review Handout #09, “Mathematical Vocabulary,, which covers mathematical phrases you
may need to use in your proofs and how to use them correctly.

• Review Handout #10, “Guide to Indirect  Proofs,, which provides  some guidance about
how to set up proofs by contradiction and contrapositive.

• Review Handout #11, “Ten Techniques to Get Unstuck,, for advice about how to make
progress on these sorts of problems when you’re not sure what to do.

• Review Handout #12, “Proofwriting Checklist,, for a detailed set of criteria you should ap-
ply to your proofs before submitting them. We will be running this same checklist on your
proofs when grading, so please be sure to look over it before submitting!

• Review the online “Guide to ∈ and ⊆, to make sure you understand the distinction between
these terms.

As always, please feel free to drop by office hours or post on Piazza if you have any questions.
We're happy to help out.

Good luck, and have fun!

Checkpoint Questions Due Monday, January 15th at 2:30PM Pacifc time.
Remaining Questions Due Friday, January 19th at 2:30PM Pacifc time.
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Write your solutions to the following checkpoint problems and submit them through GradeScope by
Monday at 2:30PM Pacifc time. These problems will be graded on a 0 / 1 / 2 scale. Solutions that rea-
sonably attempt to solve all of the problems, even if the attempts are incorrect, will receive two points.
Solutions that reasonably attempt some but not all of the problems will receive one point. Solutions that
do not reasonably attempt any of the problems – or solutions that are submitted after the deadline – will
receive zero points.

Essentially, if you've made a good, honest efort to solve all of the problems and you submit on time,
you should receive two points even if your solutions contain errors.

Please make the best efort you can when solving these problems. We want the feedback we give you
on your solutions to be as useful as possible, so the more time and efort you put into them, the better
we'll be able to comment on your proof style and technique. We will try to get these problems returned
to you with feedback on your proof style by  Wednesday. Submission instructions are included in the
“Problem Set Policies, handout.

Checkpoint Problem One: Finding Negations
In order to write a proof by contradiction or contrapositive, you’ll need to determine the negation of one
or more statements. In Friday’s lecture, we talked about a few common classes of statements and how to
form their  negations.  Using what  you’ve learned,  answer the following multiple-choice questions  and
briefy explain how you arrived at your answer.

Which of the following is the negation of “everything that has a beginning has an end?,

A) Everything that does not have a beginning has an end.
B) Everything that has a beginning has no end.
C) There is something that has no beginning and has an end.
D) There is something that has a beginning and has no end.

Which of the following is the negation of “there is a successful person who is grateful?,

A) There is an unsuccessful person who is grateful.
B) There is a successful person who is ungrateful.
C) Every successful person is grateful.
D) Every successful person is ungrateful.
E) Every unsuccessful person is grateful.
F) Every unsuccessful person is ungrateful.

Which of the following is the negation of “if A ⊆ B, then A – B = Ø?,

A) If A ⊆ B, then A – B = Ø.
B) If A ⊆ B, then A – B ≠ Ø.
C) If A ⊈ B, then A – B = Ø.
D) If A ⊈ B, then A – B ≠ Ø.
E) There are sets A and B where A ⊆ B and A – B = Ø.
F) There are sets A and B where A ⊆ B and A – B ≠ Ø.
G) There are sets A and B where A ⊈ B and A – B = Ø.
H) There are sets A and B where A ⊈ B and A – B ≠ Ø.

Remember that you need to provide a justifiation for your answers. While it’s not required, ideally you
should be able to explain both why your answer is iorreit and why all the other answers are iniorreit.
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Checkpoint Problem Two: Multiples of Three
In class, we talked a fair amount about odd and even numbers, which arise when dividing numbers in
half. This question generalizes the idea of “even, and “odd, to similar terms that arise when dividing by
three.

An integer is called a multiple of three if it can be written as 3k for some integer k. An integer is con-
gruent to one modulo three if it can be written as 3k + 1 for some integer k, and an integer is congruent
to two modulo three if it can be written as 3k + 2 for some integer k. For each integer n, exactly one of
the following is true (you don't need to prove this):

• n is a multiple of three.

• n is congruent to one modulo three.

• n is congruent to two modulo three.

We'd like you to prove this result:

For every integer n, n is a multiple of three if and only if n2 is a multiple of three.

To do this, we'll have you prove the following two statements:

For any integer n, if n a multiple of three, then n2 is a multiple of three.

For any integer n, if n2 is a multiple of three, then n is a multiple of three.

We’ve broken this question down into a few parts.

i. Prove the frst of these statements with a direct proof.

Not sure how to do that? Take a look at our proof that if n is even, then n2 is even.

ii. Prove the second of these statements using a proof by contrapositive. Make sure that you state
the contrapositive of the statement explicitly before you attempt to prove it.

As a hint, think about using a proof by iases.

iii. Prove, by contradiction, that √3 is irrational.

You may want to read over the proof that the square root of two is irrational and use it as a starting point.
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The remainder of these problems are due by Friday at 2:30PM.

Problem One: Set Theory Warmup
This question is designed to help you get used to the notation and mathematical conventions surrounding
sets. Consider the following sets:

        A = { 1, 2, 3, 4 }
        B = { 2, 2, 2, 1, 4, 3 }
        C = { 1, {2}, {{3, 4}} }
        D = { 1, 3 }
        E = ℕ
        F = { ℕ }

Answer each of the following questions and briefy justify your answers. No proofs are necessary.

i. Which pairs of the above sets, if any, are equal to one another?

ii. Is D ∈ A? Is D ⊆ A?

iii. What is A ∩ C? How about A ∪ C? How about A Δ C?

iv. What is A – C? How about {A – C}? Are those sets equal?

v. What is |B|? What is |E|? What is |F|?

vi. What is E – A? Express your answer in set-builder notation.

vii. Is 0 ∈ E? Is 0 ∈ F?

Problem Two: The Power Set Revisited
In our frst lecture, we saw an operation called the power set that, given a set S, produces a set ℘(S) con-
sisting of all the subsets of the set S. Why didn't we introduce an operation that, given a set S, produces a
set consisting of all the elements of S?

Problem Three: Much Ado About Nothing
It can take a bit of practice to get used to the empty set. This problem will ask you to think about a few
diferent sets related to Ø.

Go to the CS103 website and download the starter fles for Problem Set One. Unpack the fles some-
where convenient and open up the bundled project. Answer each part of this question by editing the rel-
evant resource fles (they’re in the res/ directory). There’s information in the top of each of the fles
about how to represent sets; most importantly, note that to write out the empty set, you should write {}
rather than using the empty-set symbol. For example, the set {Ø} would be written as {{}}.

i. Edit the fle PartI.object so that it contains a set equal to Ø ∪ {Ø}.

ii. Edit the fle PartII.object so that it contains a set equal to Ø ∩ {Ø}.

iii. Edit the fle PartIII.object so that it contains a set equal to {Ø} ∪ {{Ø}}.

iv. Edit the fle PartIV.object so that it contains a set equal to {Ø} ∩ {{Ø}}.

v. Edit the fle PartV.object so that it contains a set equal to ℘(℘(Ø)).

vi. Edit the fle PartVI.object so that it contains a set equal to ℘(℘(℘(Ø))).

The starter code contains a driver program you can use to see the contents of your fles and confrm
they’re syntactically  correct.  Submit your answers  through GradeScope under “Coding Problems for
Problem Set One, by uploading these six fles. You’re welcome to submit as many times as you’d like.
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Problem Four: Set Theory in C++
The C++ standard library contains a type called std::set that represents a set of elements, all of which
must be of the same type. For example, the type std::set<int> represents a set of integers, the type
std::set<std::string> represents a set of strings, and std::set<std::set<int>> is a type repre-
senting a set of sets of integers.

There are all sorts of operations you can perform on std::sets. For example, here’s how you iterate
over all the elements of a set:

std::set<T> mySet;
for (T elem: mySet) {
    /* … do something with the current element elem … */
}

Here’s how you check whether a particular value is an element of a set:

if (mySet.count(value)) {
    /* … value  mySet … */∈
} else {
    /* … value  mySet … */∉
}

And, fnally, here’s how you can get the cardinality of a set:

size_t size = mySet.size();

Here, the size_t type is a type representing a natural number, since sets can’t have negative size. (The
folks who implemented the C++ standard libraries had a strong discrete math background.)

One of the major diferences between the sets that we’ve been talking about in CS103 and the std::set
type  is  that  in  discrete  mathematics,  sets  can  contain  anything  –  numbers,  philosophical  concepts,
recipes, other sets, etc. – but in C++ all objects in a set must have the same type. For the purposes of
this problem, we’ve created a custom C++ type called Object. Variables of type Object can represent
just about anything, so a std::set<Object> represents something pretty similar to the sets we’ve been
studying so far.

Some Objects are actually just std::sets in disguise. If you have an Object, you can test whether it’s
actually a set by using this provided helper function:

bool isSet(Object o);

This takes in an  Object, then returns true if that  Object is actually a set and false otherwise. If you
have an Object that really is a set, you can convert it to a set by using this helper function:

std::set<Object> asSet(Object o);

This function takes in an  Object that you know happens to be a set, then returns the  std::set<Ob-
ject> that it actually is.

For example, suppose you have an Object that you know is really the set {1, 2, 3, 4}. You could iterate
over it using this code:

Object reallyASet = /* … */;
for (Object x: asSet(reallyASet)) {
    /* … do something with x … */
}

In this problem, we’d like you to demonstrate your understanding of sets and set theory by coding up a
number of functions in C++ that operate on sets. In doing so, we hope that you’ll solidify your grasp of
the distinctions between related concepts in set theory, such as the the ∈ and ⊆ relations and power sets.

(Continued on the next page)
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Open the fle SetTheory.cpp from the starter fles. There, you’ll fnd a bunch of stubs of functions that
you’ll need to implement. The provided starter code contains a test harness you can use to try out your
functions. You won’t need to modify any of the other C++ fles bundled with the starter code.

As with Problem Three, you’ll submit the code that you write through GradeScope separately from the
rest of the problems on this problem set. The GradeScope autograder will get back to you with feedback
about how you’re doing on this problem, and you’re welcome to submit as many times as you’d like.

i. Implement a function

bool isElementOf(Object S, Object T);

that takes as input two Objects S and T, then returns whether S ∈ T.

S and T might not be sets; you’ll need to use the isSet and asSet funitions appropriately.

ii. Implement a function

bool isSubsetOf(Object S, Object T);

that takes as input an object S and an object T, then returns whether S ⊆ T.

S and T might not be sets; use the isSet prediiate to iheik whether the appropriate arguments are
sets and asSet to get a view of them as sets.

iii. Implement a function

bool areDisjointSets(Object S, Object T);

that takes as input two objects S and T, then returns whether S and T are sets where S ∩ T = Ø.
(Two sets with this property are called disjoint.) The input parameters S and T may or may not
be sets, and if they aren’t, your function should return false.

iv. Implement a function

bool isSingletonOf(Object S, Object T);

that takes as input two objects S and T, then returns whether S = {T}. Again, S and T may or may
not be sets.

v. Implement a function

bool isElementOfPowerSet(Object S, Object T);

that takes as input two objects  S and  T, then returns whether  S and  T are sets and  S ∈ ℘(T).
Again, S and T may or may not be sets.

As a hint, you shouldn’t need to write iode that iomputes ℘(T) expliiitly. See if you ian fnd a dif-
ferent way to do this.

vi. Implement a function

bool isSubsetOfPowerSet(Object S, Object T);

that takes as input two objects  S and  T, then returns whether  S and  T are sets and  S ⊆ ℘(T).
Again, S and T may or may not be sets.

vii. Implement a function

bool isSubsetOfDoublePowerSet(Object S, Object T);

that takes as input two objects S and T, then returns whether S and T are sets and S ⊆ ℘(℘(T)).
Again, S and T may or may not be sets.

To submit your work, upload your edited  SetTheory.cpp fle to GradeScope. You’ll  get immediate
feedback on your score from our autograder. (Don’t forget to include the fles from Problem Three!)
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Problem Five: Describing the World in Set Theory
The notation of set theory (e.g. ∪, ∩, ℘, ⊆, ∈, etc.) is a great tool for describing the real world. Answer
each of the following questions by writing an expression using set theory notation, but  without using
plain English, without using set-builder notation, without introducing any new variables, and without us-
ing propositional or frst-order logic (which we’ll cover next week).

i. Let’s have C be the set of US citizens, S  the set of people who live in a US state, M be the set of
all people eighteen and older, and V be the set of people who are allowed to vote in US presiden-
tial elections. Write an expression that says that every US citizen age eighteen and older who
lives in a US state can vote in a US presidential election.

Onie you’ve written up your answer to this problem, take a minute to type-check it. As an example, sup-
pose that you have the following answer:

(C ∈ M) ∩ (V ∈ M)

This expression ian’t possibly be right, and here’s one way to see this. The expression C ∈ M is of type
boolean – either C ∈ M is true or it isn’t – and the same is true of V ∈ M. However, the interseition opera-
tor ∩ ian only be applied to sets. The expression therefore iontains a type error: it tries to apply an opera -
tor that only works on sets to boolean values. 

ii. Suppose you’re on an exciting frst  date. Let  Y represent your hobbies and  D represent your
date’s hobbies. Write an expression that says that you have a hobby that your date doesn’t have.

You ian type-iheik this answer in a diferent way. For example, suppose you iame up with this expression:
Y ∪ D

Here, Y and D are sets, so it’s perfeitly fne to write Y ∪ D, whiih evaluates to an objeit of type set. But
notiie that the statement here asks you to write an expression that says “you have a hobby that your date
doesn’t have,” and that statement is essentially of type boolean (you either do or do not have a hobby your
date doesn’t have). Therefore. Y ∪ D ian’t possibly be an expression with the right meaning, sinie the type
of the expression (set) doesn’t matih the type of the statement (boolean).

iii. Tom Stoppard’s play  Rosenirantz and Guildenstern are Dead contains this quote in which the
leader of a theater troupe discusses what sorts of plays his group is willing to put on:

“We're more of the love, blood, and rhetoric school. Well, we can do you blood and
love without the rhetoric, and we can do you blood and rhetoric without the love,
and we can do you all three concurrent or consecutive. But we can't give you love
and rhetoric without the blood. Blood is compulsory.,

Let B be the set of all plays involving blood, L be the set of all plays involving love, and R be the
set of all plays involving rhetoric. Write an expression for all  plays involving at least one of
blood, love, and rhetoric which also happen to include blood.

iv. In the Talking Heads song Crosseyed and Painless, David Byrne speaks the following lines:

“Facts are simple and facts are straight.
Facts are lazy and facts are late.,

Let F be the set of all facts. Let A,  B,  C, and D represent the set of all things that are simple,
straight, lazy, and late, respectively. Write an expression that conveys David Byrne’s lyrics in the
language of set theory.

v. Let’s say that a committee is a group of people, which we can think of as being represented by
the set of people on that committee. Let’s have S represent the set of all students at Stanford and
let F represent the set of all faculty at Stanford. Write an expression representing the set of all
committees you can make from Stanford students and faculty that contain at least one student
and at least one faculty member. You can assume no one is both a student and a faculty member.

Something to think about: how would you say “all iommittees made purely of students?”



8 / 12

Problem Six: Modular Arithmetic
Diferent numbers can yield the same remainder when divided by some number. For example, the num-
bers 1, 12, 23, and 34 all leave a remainder of one when divided by eleven. To formalize this relation-
ship between numbers, we'll introduce a relation ≡ₖ that, intuitively, indicates that two numbers leave
the same remainder when divided by k. For example, we'd say that 1 ≡₁₁ 12, since both 1 and 12 leave a
remainder of 1 when divided by 11, and that 8 ≡₃ 14, since both 8 and 14 leave a remainder of 2 when
divided by 3. To be more rigorous, we'll formally defne ≡ₖ. For any integer k, defne a ≡ₖ b as follows:

We say that a ≡ₖ b if there exists an integer q such that a – b = kq
For example, 7 ≡₃ 4, because 7 – 4 = 3 = 3·1, and 13 ≡₄ 5 because 13 – 5 = 8 = 4·2. If x ≡ₖ y, we say
that  x is congruent to y modulo k, hence the terminology in the checkpoint problem. In this problem,
you will prove several properties of modular congruence.

i. Prove that for any integer x and any integer k that x ≡ₖ x.

Be iareful not to assume what you need to prove. Don’t start your proof by assuming there’s a ihoiie of q
where x – x = kq and then solving for q. If you assume there’s an integer q where x – x = kq, you’re al -
ready assuming that x ≡  x! Look at the proofs we did in leiture with odd and even numbers as an exampleₖ
of how to prove that there is a number with a speiifi property without making any unfounded assumptions.

ii. Prove that for any integers x and y and any integer k that if x ≡  yₖ , then y ≡  xₖ .

Keep an eye out for your variable sioping in the above proof. Make sure you introduie the variables x, y,
and k before you use them. Are they ihosen arbitrarily? Do they represent speiifi values?

iii. Prove that for any integers x, y, and z and any integer k that if x ≡  yₖ  and y ≡  zₖ , then x ≡ₖ z.

The three properties you have just proven show that modular congruence is an  equivalence relation.
Equivalence relations show up everywhere in computer science, and we’ll talk about them in week three.

Problem Seven: Two Is Irrational?
In lecture, we proved that √2 is irrational, and in the checkpoint problem you proved that √3 is irrational.
Below is a purported proof that √4 is irrational:

Theorem: √4 is irrational.

Proof: Assume for the sake of contradiction that √4 is rational. Then there must exist integers p
and q where q ≠ 0, where p / q = √4 , and where p and q have no common factors other than 1
and -1.

Starting with p / q = √4  and squaring both sides tells us that p2 / q2 = 4. We can then cross-
multiply by q2 to see that p2 = 4q2. Since q2 is an integer and p2 = 4q2, we see that p2 is a multi-
ple of four, and therefore that p is a multiple of four. This tells us p = 4n for some integer n.
Since we know that 4q2 = p2 and p = 4n, we can do some algebraic substitutions to see that
4q2 = (4n)2 = 16n2, so q2 = 4n2. Since n2 is an integer and q2 = 4n2, we see that q2 is a multiple
of four, so q is a multiple of four as well. But since both p and q are multiples of four, we see
that p and q share a common divisor other than ±1, contradicting our initial assumption. We
have reached a contradiction, so our assumption must have been incorrect. Thus √4 is irra-
tional. ■

This proof has to be wrong, because √4 = 2 =  2/1, so it is indeed rational! What error does this proof
make that lets it conclude √4 is irrational? Be specifc.

The best way to fnd a faw in a proof is to fnd a speiifi, iniorreit ilaim made in the proof and to ex -
plain, ioniretely, why that ilaim is iniorreit. Also note that your job isn’t to try to “fx” the proof by ex-
plaining how you’d iorreit the error. We just want you to ionvinie us you see what’s wrong.
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Problem Eight: Properties of Sets
Here are some claims about properties of sets. Some of them are true and some of them are false. For
each true statement, write a proof that the statement is true. For each false statement, write a disproof
of the statement (take a look at the Proofwriting Checklist for information about how to write a dis-
proof.) You can use any proof techniques you’d like. 

i. Prove or disprove: for all sets A, B, and C, if A ∈ B and B ∈ C, then A ∈ C.

This is your frst example of a “prove or disprove” problem. Part of the ihallenge of approaihing a prob-
lem like this one is that you’ll need to fgure out whether or not the statement is even true in the frst plaie,
sinie if it’s true you’ll want to prove it and if it’s false you’ll want to disprove it.

Here are two strategies for approaihing problems like these. First, try out a lot of examples! You’ll want to
get a feel for what the symbolii expression above “feels” like in praitiie. Seiond, get a sheet of siratih pa-
per and write out both the statement and its negation. One of those statements is true, and your task is to
fgure out whiih one it is. Onie you have those two statements, think about what you would need to do to
prove eaih of them. In eaih iase, what would you be assuming? What would you need to prove? If you
ian answer those questions, you ian explore both options and seeing whiih one ends up panning out.

ii. Prove or disprove: for all sets A, B, and C, if A ⊆ B and A ⊆ C, then A ⊆ B ∩ C.

iii. Prove or disprove: for all sets A, B, and C, if A ⊊ B and A ⊊ C, then A ⊊ B ∩ C. (The notation
A ⊊ B says that A is a strict subset of B, meaning that A ⊆ B and A ≠ B.)

iv. Prove or disprove: there exists a set A where ℘(A) = {A}.

v. Prove or disprove: for all sets A and B, if ℘(A) = ℘(B), then A = B.

Look baik at Wednesday’s leiture. What’s a good general way to prove that two sets are equal?
 

Before you turn in these proofs, be sure to read over the Proofwriting Cheiklist and to go one item at a
time through eaih of your proofs. Here are a few speiifi things to look for:

• Make sure that the struitures of your proofs matih the defnitions of the relevant terms. For exam-
ple, to prove that a set S is a subset of a set T, follow the pattern from leiture: piik an arbitrary
x ∈ S, then prove that x ∈ T by making speiifi ilaims about x.

• However, avoid restating defnitions in the abstrait. For example, rather than writing
“We know that S ⊆ T if every element of S is an element of T.

Therefore, sinie we know that A ⊆ B and x ∈ A, we see that x ∈ B.”
instead remove that frst sentenie and just write something like this:

“Sinie x ∈ A and A ⊆ B, we see that x ∈ B.”
Whoever is reading your proof knows all the relevant defnitions. They’re more interested in seeing
how those defnitions interact with one another than what those defnitions are.

• Make sure you ilearly indiiate what eaih variable means and whether it’s ihosen arbitrarily or
ihosen to have a speiifi value. For example, in your answers, if you refer to variables like A, B,
or C, you should ilearly indiiate whether they’re ihosen arbitrarily or refer to speiifi values.

• If you’re talking about an arbitrary set A, it’s often tempting to try to list of the elements of A by
writing something like A = { x₁, x₂, …, x  ₙ }. The problem with this approaih is that by writing
A = { x₁, x₂, …, x  ₙ }, you’re impliiitly saying that the set A is fnite, sinie you’re ilaiming it only
has n elements in it. This is a problem if A is an infnite set. In fait, if A is infnite, beiause of
Cantor’s theorem you ian’t neiessarily even write A = { x₁, x₂, x₃, … }, sinie you might run out of
natural numbers with whiih to name the elements of A without having listed all of them!



10 / 12

Problem Nine: Piano Tuning
At a frst glance, irrational numbers can seem like a purely mathematical idea without any practical appli-
cations, but, surprisingly, irrational numbers have real-world implications.

Prove that 12
√2 , the twelfth root of two, is irrational. Interestingly, this result means that it's impossible to

tune a piano such that every half step, perfect ffth, perfect fourth, and octave are all correct. If you're cu-
rious why this is, check out this great Minute Physics video about the diferent ratios that arise in music
and how the twelfth root of two relates.

As a hint, do not attempt to prove this result by starting with the proof that √2 is irrational and making
appropriate modifcations – that will get really messy, really fast. Instead, see if you can prove the follow-
ing intermediary result, and build your proof around it:

If 12
√2 is rational, then √2 is rational.

Some notes on this problem:

• For the purposes of CS103, we’ve defned a rational number as a number r that ian be written as
p/q for integers p and q where q ≠ 0. For example, if you wanted to show that 1.64 is a rational
number, you iould just remark that it ian be written as 164/100 without any further elaboration, even
though 164 and 100 both share 4 as a iommon faitor. While you ian always write rational num-
bers as a ratio of numbers with no iommon faitors, that isn’t ofiially part of the defnition.

• If you want to use any properties of the rational numbers that we did not prove in ilass (for exam-
ple, that the sum of two rational numbers is rational), you should prove those results frst.

• You may want to read the Mathematiial Prerequisites handout for a refresher on higher roots.

Problem Ten: Tiling a Chessboard
Suppose you have a standard 8 × 8 chessboard with two opposite corners re-
moved, as shown here. In the course notes (pages 60 - 61), there's a proof that
it's impossible to tile this chessboard using 2 × 1 dominoes. This question con-
siders what happens if you try to tile the chessboard using right triominoes, L-
shaped tiles that look like this:

i. Prove that it’s impossible to tile an 8 × 8 chessboard missing two opposite corners with right tri-
ominoes.

ii. Prove or disprove: there is a natural number n ≥ 3 where it’s possible to tile an n × n chessboard
missing two corners with right triominoes.

Part (ii) of this problem is another example of a prove-or-disprove type problem, and you’ve had plenty of
praitiie with that from Problem Eight. So approaih it the same way – grab a sheet of siratih paper, write
out both the statement and its negation, work out what it is that you’d do if you wanted to prove eaih of
those statements is true, and try a lot of examples. Explore both options and see what you fnd! As with
part (i), drawing piitures would be a great strategy here. If you ian suiiessfully tile a board of a given size,
great! You’re done. If you keep running into trouble, perhaps you ian spot a pattern about why that is and
use that as the basis of a disproof.

https://youtu.be/1Hqm0dYKUx4
http://web.stanford.edu/class/cs103/notes/Mathematical%20Foundations%20of%20Computing.pdf#page=60
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Problem Eleven: Yablo's Paradox
A logical paradox is a statement that results in a contradiction regardless of whether it's true or false.
One of the simplest paradoxes is the Liar's paradox, which is the following:

This statement is false.
If the above statement is true, then by its own admission, it must be false – a contradiction! On the other
hand, if the above statement is false, then the statement “This statement is false, is false, and therefore the
statement “This statement is false, is true – a contradiction! Since this statement results in a contradiction
regardless of whether it's true or false, it's a paradox.

Paradoxes often arise as a result of self-reference. In the Liar's Paradox, the paradox arises because the
statement directly refers to itself. However, it's not the only paradox that can arise from self-reference.
This problem explores a paradox called Yablo's paradox.

Consider the following collection of infnitely many statements numbered S₀, S₁, S₂, …, where there is a
statement S  ₙ for each natural number n. These statements are ordered in a list as follows:

(S₀):  All statements in this list after this one are false.
(S₁):  All statements in this list after this one are false.
(S₂):  All statements in this list after this one are false.

···
 

More generally, for each n ∈ ℕ, the statement (Sₙ) is
(Sₙ):  All statements in this list after this one are false.

Surprisingly, the interplay between these statements makes every statement in the list a paradox.

i. Prove that every statement in this list is a paradox.

Some hints on this problem:
• We’ve asked you to prove a universal statement (every element in this list is a paradox). What is

the general template for proving a universal statement?
• Split your proof into two parts. First, show you get a iontradiition if any of the statements in

the list are true. Then, show you get a iontradiition if any of the statements in the list are false.
• You should impliiitly assume, as we’ve been doing in ilass, that every statement is either true or

false. You don’t need to worry about statements that are neither true nor false or statements that
are simultaneously true and false.

• How do you negate a universally-quantifed statement?
Now, consider the following modifcation to this list. Instead of infnitely many statements, suppose that
there are “only, 10,000,000,000 statements. Specifcally, suppose we have these statements:

(T₀):  All statements in this list after this one are false.
(T₁):  All statements in this list after this one are false.
(T₂):  All statements in this list after this one are false.

···

 (T₉,₉₉₉,₉₉₉,₉₉₉):  All statements in this list after this one are false.               
 

There's still a lot of statements here, but not infnitely many of them. Interestingly, these statements are all
perfectly consistent with one another and do not result in any paradoxes.

ii. For each statement in the above list, determine whether it's true or false and explain why your
choices are consistent with one another.

Going forward, don't worry about paradoxical statements in CS103. We won't talk about any more state-
ments like these. ☺
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Optional Fun Problem: The Mouse and the Cheese (1 Point Extra Credit)*

On each problem set, we'll provide an optional fun problem for extra credit. When we compute fnal
grades at the end of the quarter, we compute the grading curve without any extra credit factored in, then
recompute grades a second time to factor in extra credit. This way, you're not at any disadvantage if you
decide not to work through these problems. If you do complete the extra credit problems, you may get a
slight boost to your overall grade. As a matter of course policy, we don't provide any hints on the extra
credit problems – after all, they're supposed to be challenge problems! However, we're happy to chat
about them after the problem sets come due.

Suppose that you have a 3, × 3, × 3, cube of cheese subdivided into twenty-seven 1, × 1, × 1, smaller
cubes of cheese. A mouse wants to eat the entire cube of cheese and does so as follows: she frst picks
any small cube to eat frst, then moves to an adjacent small cube of cheese (i.e. a cube that shares a face
with the cube that was just eaten) to eat next, then repeats this process.

Prove that the mouse can't eat the centermost cube of cheese last.

* Adapted from Problem 4E of A Course in Combinatorics, Second Edition by Lint and Wilson.


